Statistical Optimisation of Fermentation Conditions for Citric Acid Production from

Pineapple Peels

Amenaghawon, N. A.,* Oronsaye, J. E. and S. E. Ogbeide.

Department of Chemical Engineering, Faculty of Engineering, University of Benin, PMB 1154,

Benin, Edo State, Nigeria

Abstract

This study investigated the optimisation of fermentation conditions during citric acid production

via solid state fermentation (SSF) of pineapple peels using Aspergillus niger. A three-variable,

three-level Box-Behnken design (BBD) comprising 17 experimental runs was used to develop a

statistical model for the fermentation process while response surface methodology (RSM) was used

for the optimisation of fermentation conditions. Increasing the fermentation temperature and the

moisture content of the solid substrate enhanced the production of citric acid. Increasing the broth

pH did not favour citric acid production as higher citric acid concentrations were recorded at low

pH values. These results showed that citric acid production was influenced by these variables (i.e.

temperature, moisture content and pH). The optimal fermentation conditions were determined as

follows: fermentation temperature, 35°C; broth pH, 2 and initial moisture content, 84.56%. The

maximum concentration of citric acid produced under these conditions was 72.41 g/l. These results

imply that the metabolic activity of the fermenting organismn (Aspergillus niger) used in this study

was maximum at these optimised conditions. Validation of the statistical model indicated no

difference between predicted and observed values as seen in the high correlation between model

predicted results and experimental results.

Keywords: Box-Behnken Design, Solid State Fermentation, Aspergillus niger, Citric Acid

E-mail*: andrew.amenaghawon@uniben.edu

Received: 2014/05/29

Accepted: 2014/09/04

DOI: http://dx.doi.org/10.4314/njtr.v9i2.5